植物生态

河西走廊荒漠植物优势种叶片功能性状变异及权衡

  • 李善家 ,
  • 李来周 ,
  • 缪潆祥 ,
  • 苟伟 ,
  • 苏培玺
展开
  • 1.兰州理工大学生命科学与工程学院,甘肃 兰州 730050
    2.中国科学院寒旱区陆面过程与气候变点实验室,甘肃 兰州 730000
李善家(1980-),男,教授,博士,主要从事植物逆境生理生态及其分子进化的结构与功能生物学机制.
E-mail: lishanjia@lut.edu.cn

收稿日期: 2024-07-08

  修回日期: 2024-11-18

  网络出版日期: 2025-03-17

基金资助

国家自然科学基金项目(41961007);中国科学院寒旱区陆面过程与气候变化重点实验室开放基金项目(LPCC2023003)

Variation and trade-offs in leaf functional traits of dominant desert plant species in Hexi Corridor

  • LI Shanjia ,
  • LI Laizhou ,
  • MIAO Yingxiang ,
  • GOU Wei ,
  • SU Peixi
Expand
  • 1. School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2024-07-08

  Revised date: 2024-11-18

  Online published: 2025-03-17

摘要

河西走廊不同生活型植物叶片功能性状的变异特征及其权衡关系对保持该地区生态系统稳定具有重要意义。为了解不同生活型植物对干旱环境的适应机制及其生态适应策略,沿河西走廊由东南向西北自然降水递减梯度设置东段、中段、西段调查样地,选取26种优势荒漠植物,其中灌木14种,草本12种,分析了14项叶片关键功能性状的变异特征和区域格局,探讨了叶片功能性状间的权衡关系与适应策略。结果表明:(1) 河西走廊荒漠植物优势种叶片束缚水含量(BW)、碳磷比(C:P)、植株高度(H)、叶片自由水含量(FW)变异系数超过100%。(2) 河西走廊东、中、西段不同区域植物表现出多样化的生存策略,东段灌木、草本植物在叶经济谱(LES)中的位置更靠近“缓慢投资-收益”型物种一端,中段灌木位于LES“缓慢投资-收益”型物种一端,草本则更靠近“快速投资-收益”型物种一端,西段灌木在资源丰富条件下采取“快速投资-收益”型策略,草本植物则在不利的土壤条件下采取“缓慢投资-收益”型策略。综上所述,植物生存策略受多种生态因素影响,通过性状间的优化组合与资源权衡分配实现对干旱环境的适应。

本文引用格式

李善家 , 李来周 , 缪潆祥 , 苟伟 , 苏培玺 . 河西走廊荒漠植物优势种叶片功能性状变异及权衡[J]. 干旱区研究, 2025 , 42(3) : 480 -488 . DOI: 10.13866/j.azr.2025.03.08

Abstract

The characteristics of variation in leaf functional traits of different plant types (shrubs, herbaceous plants) in Hexi Corridor and the relationships between these functional traits are extremely important for maintaining the stability of the ecosystem in this region. To explore the mechanisms of adaptation and the ecological strategies of different plant life forms in arid environments, we established survey sites in the eastern, central, and western sections along Hexi Corridor, following a gradient of decreasing natural precipitation from southeast to northwest. We selected 26 dominant desert plant species, including 14 shrubs and 12 herbaceous plants, and analyzed their variability and regional patterns of 14 key leaf functional traits. We also investigated the trade-offs and adaptive strategies among these traits. The following results were obtained: (1) The coefficient of variation for leaf-bound water content (BW), carbon to phosphorus ratio (C:P), plant height (H), and leaf free water content (FW) of dominant desert plant species in the Hexi Corridor exceeds 100%. (2) Plants in different regions of Hexi Corridor displayed diverse survival strategies: plants in the eastern section adopted a “slow-return” strategy, shrubs and herbaceous plants in the central section exhibited “slow-return” and “fast-return” strategies respectively, while shrubs in the western section adopted a “rapid resource acquisition” strategy under resource-rich conditions, and herbaceous plants adopted a “slow-return” strategy under unfavorable soil conditions. The survival strategies of plants are influenced by multiple ecological factors, and they adapt to arid environments through trait optimization and resource allocation.

参考文献

[1] Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: Traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164 (77): 143-164.
[2] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339.
  [Liu Xiaojuan, Ma Keping. Plant functional traits—concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325-339.]
[3] 李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因[J]. 植物生态学报, 2021, 45(10): 1154-1172.
  [Li Yaoqi, Wang Zhiheng. Leaf morphological traits: ecological function, geographic distribution and drivers[J]. Chinese Journal of Plant Ecology, 2021, 45(10): 1154-1172.]
[4] 胡焕琼, 李利, 于军, 等. 四翅滨藜和多枝柽柳对土壤干旱的响应差异[J]. 干旱区研究, 2023, 40(12): 2007-2015.
  [Hu Huanqiong, Li Li, Yu Jun, et al. Differences in the response to soil drought in Atriplex canescens and Tamarix ramosissima[J]. Arid Zone Research, 2023, 40(12): 2007-2015.]
[5] 余洋, 张志浩, 杨建明, 等. 疏叶骆驼刺叶、根生态化学计量特征对水氮添加的响应[J]. 干旱区研究, 2022, 39(2): 551-559.
  [Yu Yang, Zhang Zhihao, Yang Jianming, et al. Stoichiometric characteristics of leaves and fine roots in Alhagi sparsifolia in response to the addition of nitrogen and water[J]. Arid Zone Research, 2022, 39(2): 551-559.]
[6] 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035.
  [He Yunyu, Guo Shuiliang, Wang Zhe. Research progress of trade-off relationships of plant functional traits[J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035.]
[7] 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2): 153-160.
  [Li Shanjia, Su Peixi, Zhang Haina, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]Plant Physiology Journal, 2013, 49(2): 153-160.]
[8] 马俊梅, 马剑平, 满多清, 等. 河西走廊天然胡杨林的分布和更新特征及其与土壤因子的关系[J]. 干旱区研究, 2023, 40(2): 224-234.
  [Ma Junmei, Ma Jianping, Man Duoqing, et al. Distribution and regeneration characteristics of natural Populus euphratica forests in Hexi Corridor and their relationship with soil factors[J]. Arid Zone Research, 2023, 40(2): 224-234.]
[9] 李敏, 孙杰, 陈雪, 等. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113.
  [Li Min, Sun Jie, Chen Xue, et al. Leaf-soil stoichiometry and homeostasis characteristics of desert-related plants[J]. Arid Zone Research, 2024, 41(1): 104-113.]
[10] 董雪, 李永华, 辛智鸣. 河西走廊西段戈壁灌木群落多样性及其分布格局研究[J]. 干旱区地理, 2020, 43(6): 1514-1522.
  [Dong Xue, Li Yonghua, Xin Zhiming, et al. Gobi shrub species diversity and its distribution pattern in west Hexi Corridor[J]. Arid Land Geography, 2020, 43(6): 1514-1522.]
[11] 田玉清, 石道良, 张淑倩, 等. 河西走廊水生植物多样性格局、群落特征及影响因素[J]. 生态学报, 2020, 40(1): 202-212.
  [Tian Yuqing, Shi Daoliang, Zhang Shuqian, et al. Biogeographic pattern, main community types, and the influencing factors of aquatic macrophytes in the Hexi Corridor of Northwest China[J]. Acta Ecologica Sinica, 2020, 40(1) : 202-212.]
[12] 孙启兴, 杨晓东, 李浡睿, 等. 水力性状对荒漠植物群落物种多度分布格局的影响[J]. 干旱区研究, 2023, 40(3): 412-424.
  [Sun Qixing, Yang Xiaodong, Li Borui, et al. Effects of hydraulic traits on the species abundance distribution pattern of desert plant communities[J]. Arid Zone Research, 2023, 40(3): 412-424.]
[13] 尚佳州, 赵瑜琦, 王卫锋, 等. 干旱对碧玉杨幼苗水氮利用与同化物分配的影响[J]. 干旱区研究, 2022, 39(3): 893-899.
  [Shang Jiazhou, Zhao Yuqi, Wang Weifeng, et al. Response of drought on water and nitrogen utilization and carbohydrate distribution of Populus×euramericana ‘Biyu’ cuttings[J]. Arid Zone Research, 2022, 39(3): 893-899.]
[14] Jing F, Cadotte M W, Jin G. Individual-level leaf trait variation and correlation across biological and spatial scales[J]. Ecology and Evolution, 2021, 11(10): 5344-5354.
[15] 李善家, 王子濠, 苏培玺, 等. 荒漠植物性状权衡策略及功能多样性研究进展[J]. 生态学报, 2022, 42(18): 7308-7320.
  [Li Shanjia, Wang Zihao, Su Peixi, et al. Research progress on the trade-off strategy and functional diversity of desert plants[J]. Acta Ecologica Sinica, 2022, 42(18): 7308-7320.]
[16] 赵文智, 任珩, 杜军, 等. 河西走廊绿洲生态建设和农业发展的若干思考与建议[J]. 中国科学院院刊, 2023, 38(3): 424-434.
  [Zhao Wenzhi, Ren Heng, Du Jun, et al. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 424-434.]
[17] 满多清, 李得禄, 刘明成, 等. 民勤西沙窝沙区不同演替阶段植被变化特征研究[J]. 干旱区研究, 2023, 40(12): 1949-1958.
  [Man Duoqing, Li Delu, Liu Mingcheng, et al. Vegetation change characteristic research of different evolution stages in Minqin Xishawo desert areas[J]. Arid Zone Research, 2023, 40(12): 1949-1958.]
[18] Singh V, Pallaghy C K, Singh D. Phosphorus nutrition and tolerance of cotton to water stress: II. Water relations, free and bound water and leaf expansion rate[J]. Field Crops Research, 2006, 96(2): 199-206.
[19] 高永龙, 孙艳丽, 徐铭泽, 等. 北京百花山落叶阔叶林群落内木本植物的叶片功能性状变异特征[J]. 北京林业大学学报, 2024, 46(4): 40-51.
  [Gao Yonglong, Sun Yanli, Xu Mingze, et al. Variation characteristics in leaf functiona traits of woody plants in deciduous broadleaved forest community in Baihua Mountain of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(4): 40-51.]
[20] 阮成江, 李代琼. 黄土丘陵区沙棘林几个水分生理生态特征研究[J]. 林业科学研究, 2002, 15(1): 47-53.
  [Ruan Chengjiang, Li Daiqiong. Study on several hydrological and ecological characteristics of Hippophae rhamnoides in the loess hilly region[J]. Forest Research, 2002, 15(1): 47-53.]
[21] 戚德辉, 温仲明, 王红霞, 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36(20): 6420-6430.
  [Qi Dehui, Wen Zhongming, Wang Hongxia, et al. Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their response stomicro-topographical variations in the hilly and gully regions of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2016, 36(20): 6420-6430.]
[22] 刘玉祯, 刘文亭, 杨晓霞, 等. 放牧对全球草地生态系统碳氮磷化学计量特征影响的Meta分析[J]. 应用生态学报, 2022, 33(5): 1251-1259.
  [Liu Yuzhen, Liu Wenting, Yang Xiaoxia, et al. Effects of livestock grazing on the C:N:P stoichiometry in global grassland ecosystem: A Meta analysis[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1251-1259.]
[23] Sistla S A, Schimel J P. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytologist, 2012, 196(1): 68-78.
[24] Wright I J, Reich P B, Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827.
[25] 李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435.
  [Li Rui, Shan Lishan, Xie Tingting, et al. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient[J]. Arid Zone Research, 2023, 40(3): 425-435.]
[26] Drenovsky R E, Richards J H. Critical N: P values: Predicting nutrient deficiencies in desert shrublands[J]. Plant and Soil, 2004, 259(1): 59-69.
[27] Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2017.
[28] 李佳婧, 梁咏亮, 李静尧, 等. 基于叶片功能性状的贺兰山西坡植物生态策略分析[J]. 生态环境学报, 2024, 33(1): 45-53.
  [Li Jiajing, Liang Yongliang, Li Jingyao, et al. Analysis of plant ecological strategies based on leaf functional traits on the western slope of Helan Mountain[J]. Ecology and Environmental Sciences, 2024, 33(1): 45-53.]
[29] 周志宇, 张莉丽, 高文星, 等. 试论灌木是干旱、半干旱区草地恢复中重要的生物资源[J]. 草业科学, 2007, 24(12): 19-21.
  [Zhou Zhiyu, Zhang Lili, Gao Wenxing, et al. A discussion about shrub being an important biological resource in grassland restoration in arid and semi-arid regions[J]. Pratacultural Science, 2007, 24(12): 19-21.]
[30] 王子婷, 杨磊, 李广, 等. 半干旱黄土区苜蓿退化对坡面草本植物分布及多样性的影响[J]. 生态学报, 2019, 39(10): 3720-3729.
  [Wang Ziting, Yang Lei, Li Guang, et al. Effects of alfalfa (Medicago sativa L. ) degradation on herbage distribution and diversity in the semi-arid Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3720-3729.]
[31] Kubiske M E, Abrams M D. Seasonal, diurnal and rehydration-induced variation of pressure-volume relationships in Pseudotsuga menziesii[J]. Physiologia Plantarum, 1991, 83(1): 107-116.
[32] Amram M A, Wang X, Shrestha N. Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China[J]. Science of the Total Environment, 2023, 897(52): 165394.
[33] Turner I M. Sclerophylly: Primarily Protective?[J]. Functional Ecology, 1994, 8(6): 669-675.
[34] Comstock J, Mencuccini M. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G. ), a desert subshrub[J]. Plant, Cell & Environment, 1998, 21(10): 1029-1038.
[35] Wright I J, Ackerly D D, Bongers F. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests[J]. Annals of Botany, 2007, 99(5): 1003-1015.
[36] 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10): 1135-1153.
  [Chen Yingting, Xu Zhenzhu. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153.]
[37] 张姗姗, 张兴, 曲彦婷, 等. 留园植物叶性状及其叶经济谱研究[J]. 北方园艺, 2022(14): 57-65.
  [Zhang Shanshan, Zhang Xing, Qu Yanting, et al. Study on leaf traits and leaf economic spectrum of lingering garden[J]. Northern Horticulture, 2022(14): 57-65.]
[38] 宋贺, 于鸿莹, 陈莹婷, 等. 北京植物园不同功能型植物叶经济谱[J]. 应用生态学报, 2016, 27(6): 1861-1869.
  [Song He, Yu Hongying, Chen Yingting, et al. Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1861-1869.]
文章导航

/