灌溉水矿化度和钠吸附比互作对膜下滴灌棉花生长及产量的影响
收稿日期: 2024-03-26
修回日期: 2024-09-27
网络出版日期: 2024-12-20
基金资助
国家重点研发计划课题(2022YFD1900502);国家自然科学基金面上项目(52479044);第一师阿拉尔市财政科技计划项目(2024NY15)
Effects of irrigation water mineralization and sodium adsorption ratio on the growth and yield of drip-irrigated cotton under film
Received date: 2024-03-26
Revised date: 2024-09-27
Online published: 2024-12-20
为了缓解水资源供需矛盾,弥补淡水水资源的不足,利用微咸水和咸水灌溉成为了缓解用水危机的重要途径,同时在相同灌溉水矿化度下,灌溉水钠吸附比(SAR)的不同对棉花生长和产量的影响也会不同。因此,为了进一步探讨灌溉水矿化度和钠吸附比对棉花的影响,以棉花为研究对象,设计了3种不同灌溉水矿化度水平,分别为3 g·L-1(T3)、5 g·L-1(T5)和7 g·L-1(T7);每种矿化度设计3种不同钠吸附比(SAR)水平,分别为10 (mmol·L-1)1/2(S10)、15 (mmol·L-1)1/2(S15)和20 (mmol·L-1)1/2(S20),并以当地淡水灌溉作为对照(CK),共10个处理,研究不同灌溉水矿化度和SAR组合对土壤盐分、棉花生长、植株离子积累、产量及水分利用效率的影响。结果表明:土壤盐分随着灌溉水矿化度或SAR的增加而增加,随着土壤深度的增加呈现先增加后降低的趋势;植株Na+含量随着灌溉水矿化度或SAR的增加而增加,二者的交互作用对植株Na+含量有极显著影响;而植株K+含量、K+/Na+和N含量均随着灌溉水矿化度或SAR的增加而降低。株高、茎粗、叶面积指数和干物质量均随着灌溉水矿化度或钠吸附比的增加呈现下降趋势,灌溉水矿化度或钠吸附比极显著地抑制了干物质量的积累。灌溉水矿化度或SAR对单株铃数、单铃重、籽棉产量和耗水量(ET)有极显著影响,灌溉水SAR对水分利用效率(WUE)有极显著影响。与CK处理相比,T3S10的产量和WUE分别增加了3.27%和1.09%,T5S10的产量和WUE分别提高了2.54%和0.47%,T3S15的产量增加了1.18%,说明适度降低灌溉水SAR可以缓解矿化度增加导致棉花减产程度。不同矿化度和SAR灌溉水增加了棉花植株Na+含量,降低了K+和N营养的吸收,增大了K+/Na+,所以,棉花株高、茎粗、叶面积和干物质积累量随着灌溉水矿化度或SAR的增加逐渐降低。与CK处理相比,T3S10、T3S15、T5S10处理的单株铃数和单铃重增加。综上,当利用灌溉水矿化度为3 g·L-1,SAR<15 (mmol·L-1)1/2或灌溉水矿化度为5 g·L-1,SAR<10 (mmol·L-1)1/2的咸水进行灌溉时能保证棉花产量不受影响,研究结果可为新疆及其他干旱地区的水资源管理和农业可持续发展提供理论依据和数据支撑。
解玉彩 , 刘浩 , 赵丰年 , 张磊 , 赵鑫 , 师卓 , 王兴鹏 . 灌溉水矿化度和钠吸附比互作对膜下滴灌棉花生长及产量的影响[J]. 干旱区研究, 2024 , 41(12) : 2071 -2082 . DOI: 10.13866/j.azr.2024.12.09
To address the imbalance between the supply and demand of water resources and compensate for the shortage of freshwater resources, the use of brackish and saline water for irrigation has become crucial. Simultaneously, the effects of different sodium adsorption ratios (SAR) on cotton growth and yield can vary under the same degree of mineralization in irrigation water. Therefore, to further explore the effects of irrigation water mineralization and SAR on cotton, we established three mineralization treatments at 3 g·L-1(T3), 5 g·L-1(T5), and 7 g·L-1(T7). Additionally, we designed three SAR treatments at 10 (mmol·L)1/2(S10), 15 (mmol·L)1/2(S15), and 20 (mmol·L)1/2(S20). Local freshwater irrigation served as a control (CK). In total, 10 treatments were conducted in this experiment to examine the combined effects of irrigation water mineralization and SAR costress on soil salinity, cotton growth, plant ion accumulation, yield, and water use efficiency. The results indicated that soil salinity increased with higher irrigation water mineralization or SAR, initially rising before decreasing with increasing soil depth. Plant Na+ content increased with increasing irrigation water mineralization or SAR, with the interaction effect between these factors being highly significant. Conversely, plant K+, K+/Na+, and N content decreased as irrigation water mineralization or SAR increased. Additionally, plant height, stem thickness, leaf area index, and dry matter mass all showed a significant decreasing trend with increased irrigation water mineralization and SAR, with significant inhibition of dry matter accumulation observed. Irrigation water mineralization and SAR significantly affected the number of bolls per plant, boll weight, seed cotton yield, and water consumption (ET). Moreover, irrigation water SAR significantly affected water use efficiency (WUE). Compared to the CK treatment, yield and WUE increased by 3.27% and 1.09% in T3S10, 2.54% and 0.47% in T5S10, and 1.18% in T3S15, respectively. This increase indicated that moderately reducing the irrigation water SAR can help mitigate yield reduction in cotton due to increased mineralization. Different levels of mineralization and SAR in irrigation water increased the Na+ content in cotton plants while reduced K+ and N nutrient uptake, and increased the K+/Na+ ratio. Consequently, cotton plant height, stem thickness, leaf area, and dry matter accumulation gradually decreased as irrigation water mineralization or SAR increased. The number of bolls per plant and boll weight increased in the T3S10, T3S15, and T5S10 treatments compared to the CK treatment. In conclusion, using brackish water with an irrigation water mineralization of 3 g·L-1 and SAR below 15 (mmol·L-1)1/2, or an irrigation water mineralization of 5 g·L-1 with SAR below 10 (mmol·L-1)1/2, can ensure cotton yield. These findings provide a theoretical basis and reference for the efficient use of brackish water in Xinjiang and other extreme arid regions.
[1] | 国家统计局关于2023年棉花产量的公告[N]. 中国信息报, 2023-12-26(001). |
[NSO Announcement on Cotton Production in 2023[N]. China Information Daily, 2023-12-26(001). ] | |
[2] | 孙加力. 政府政策与新疆棉花生产发展[D]. 北京: 中国农业大学, 2005. |
[Sun Jiali. Policy of Government and Development of Xinjiang Cotton Production[D]. Beijing: China Agricultural University, 2005. ] | |
[3] | Wang R, Kang Y, Wan S, et al. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area[J]. Agricultural Water Management, 2011, 100(1): 58-69. |
[4] | 岳胜如, 王伦澈, 曹茜, 等. 塔里木河流域植被动态及潜在因素驱动机制[J]. 地球科学, 2024, 49(9): 3399-3410. |
[Yue Shengru, Wang Lunche, Cao Qian, et al. Vegetation dynamics and potential factors driving mechanisms in the Tarim River Basin[J]. Earth Science, 2024, 49(9): 3399-3410. ] | |
[5] | 俄有浩, 严平, 李文赞, 等. 中国内陆干旱、半干旱区苦咸水分布特征[J]. 中国沙漠, 2014, 34(2): 565-573. |
[E Youhao, Yan Ping, Li Wenzan, et al. Characteristics and distribution of brachish water in arid and semi-arid interior of China[J]. Journal of Desert Research, 2014, 34(2): 565-573. ] | |
[6] | 黄程琪. 新疆农业水资源利用效率及影响因素分析[D]. 石河子: 石河子大学, 2019. |
[Huang Chengqi. Analysis on Utilization Efficiency and Influencing Factors of Agricultural Water Resources in Xinjiang[D]. Shihezi: Shihezi University, 2019. ] | |
[7] | 李万精. 微咸水膜下滴灌棉田土壤水盐分布特征及数值模拟研究[D]. 石河子: 石河子大学, 2022. |
[Li Wanjing. Distribution Characteristics and Numerical Simulation of Soil Water and Salt under Brackish Water of Drip Irrigation under Film in Cotton Field[D]. Shihezi: Shihezi University, 2022. ] | |
[8] | 郭晓雯, 刘佳炜, 郑志玉, 等. 全生育期咸水滴灌对土壤盐分累积和棉花生长的影响[J]. 干旱区研究, 2022, 39(6): 1952-1965. |
[Guo Xiaowen, Liu Jiawei, Zheng Zhiyu, et al. Effects of saline water drip irrigation on soil salt accumulation and cotton growth during the whole growth period[J]. Arid Zone Research, 2022, 39(6): 1952-1965. ] | |
[9] | 蒋静, 翟登攀, 张超波. 灌溉施肥水平对盐渍化农田水盐分布及玉米产量的影响[J]. 应用生态学报, 2019, 30(4): 1207-1217. |
[Jiang Jing, Zhai Dengpan, Zhang Chaobo. Effects of irrigation and fertilizer levels on the distribution of water and salt in saline field and maize yield[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1207-1217. ] | |
[10] | 韦开. 去电子微咸水膜下滴灌棉花生长特征及其调控方法[D]. 西安: 西安理工大学, 2023. |
[Wei Kai. Study on Cotton Growth Charcteristics and Regulation Method under Film-mulched Drip Irrigation with Ionized Brackish Water[D]. Xi’an: Xi’an University of Technology, 2023. ] | |
[11] | 雷杰. 不同矿化度水源膜下滴灌棉田盐分累积规律及作物生长模拟研究[D]. 石河子: 石河子大学, 2023. |
[Lei Jie. Study on Salt Accumulation and Crop Growth Simulation of Drip Irrigation Cotton Field under Different Salinity Water Source Film[D]. Shihezi: Shihezi University, 2023. ] | |
[12] | 张妮, 左强, 石建初, 等. ANSWER模型评估新疆咸水灌溉棉花产量与效益[J]. 农业工程学报, 2023, 39(2): 78-89. |
[Zhang Ni, Zuo Qiang, Shi Jianchu, et al. Estimating the yields and profits of saline water irrigated cotton in Xinjiang based on ANSWER model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 78-79. ] | |
[13] | 赖虹雨, 吕德生, 朱艳, 等. 生物炭施加对微咸水滴灌棉田土壤水热盐及棉花生长的影响[J]. 干旱区研究, 2024, 41(2): 326-338. |
[Lai Hongyu, Lyu Desheng, Zhu Yan, et al. Effects of biochar application on soil hydrothermal salinity and cotton growth in brackish water drip irrigation cotton field[J]. Arid Zone Research, 2024, 41(2): 326-338. ] | |
[14] | Kandiah A, Marshali A M, et al. The Use of Saline Waters for Crop Production[M]. Food and Agriculture Organization of the United Nations, 1992. |
[15] | 张安琪. 咸水膜下滴灌对土壤环境和棉花生长的影响[D]. 泰安: 山东农业大学, 2020. |
[Zhang Anqi. Effects of Film Mulched Drip Irrigation with Saline Water on Soil Environment and Cotton Growth[D]. Tai’an: Shandong Agricultural University, 2020. ] | |
[16] | 宋有玺, 安进强, 何岸镕, 等. 微咸水膜下滴灌对棉花生长发育及其产量的影响研究[J]. 水土保持研究, 2016, 23(1): 128-132. |
[Song Youxi, An Jinqiang, He Anrong, et al. Study of mulched drip irrigation with saline water on cotton growth and yield[J]. Research of Soil and Water Conservation, 2016, 23(1): 128-132. ] | |
[17] | Yang G, Li F, Tian L, et al. Soil physicochemical properties and cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation[J]. Soil and Tillage Research, 2020, 199: 104592. |
[18] | 谭帅. 微咸水膜下滴灌土壤盐调控与棉花生长特征研究[D]. 西安: 西安理工大学, 2018. |
[Tan Shuai. Study on Soil Water and Salt Regulation and Cotton Growth Characteristics under Film-mulched Drip Irrigation with Brackish Water[D]. Xi’an: Xi’an University of Technology, 2018. ] | |
[19] | 陈文岭. 微咸水膜下滴灌棉花根系—水—盐—微量元素相互作用研究[D]. 武汉: 中国地质大学, 2018. |
[Chen Wenling. Study on the Interactions of Cotton Root-soil Moisture-salinity-trace Element under Mulched Drip Irrigation with Brackish Water[D]. Wuhan: China University of Geosciences, 2018. ] | |
[20] | Zhang J P, Li K J, Zheng C L, et al. Cotton responses to saline water irrigation in the low plain around the Bohai Sea in China[J]. Journal of Irrigation and Drainage Engineering, 2018, 144(9): 04018027. |
[21] | 吴忠东, 王全九. 微咸水钠吸附比对土壤理化性质和入渗特性的影响研究[J]. 干旱地区农业研究, 2008, 26(1): 231-236. |
[Wu Zhongdong, Wang Quanjiu. Study on impact of sodium adsorption ratio of saline water on soil physical and chemical properties and infiltration characteristics[J]. Agricultural Research in the Arid Areas, 2008, 26(1): 231-236. ] | |
[22] | 许尊秋, 陈阳, 毛晓敏. 钠吸附比和盐分浓度对新疆典型砂壤土物理性质的影响[J]. 农业工程学报, 2022, 38(20): 86-95. |
[Xu Zunqiu, Chen Yang, Mao Xiaomin. Influences of salt adsorption ratio and salt concentration on the physical properties of typical sandy loam in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 86-95. ] | |
[23] | 高福奎. 滴水春灌对南疆覆膜棉田水热盐分布及棉花生长的影响[D]. 北京: 中国农业科学院, 2023. |
[Gao Fukui. Effects of Drip Spring Irrigation on Water-Heat-Salt Distribution and Cotton Growth in Mulched Cotton Fields in Southern Xinjiang[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. ] | |
[24] | 张一迪. 过量施用化肥对日光温室连作黄瓜植株和土壤钙素积累及变化的影响[D]. 沈阳: 沈阳农业大学, 2023. |
[Zhang Yidi. Effects of Excessive Application of Chemical Fertilizer on Calcium Accumulation and Change in Continuous Cropping Cucumber Plants and Soils in Solar Greenhouse[D]. Shenyang: Shenyang Agricultural University, 2023. ] | |
[25] | 李平, 张永江, 刘连涛, 等. 水分胁迫对棉花幼苗水分利用和光合特性的影响[J]. 棉花学报, 2014, 26(2): 113-121. |
[Li Ping, Zhang Yongjiang, Liu Liantao, et al. Effect of water stress on water utilization and leaf photosynthetic characteristics in cotton (Gossypium hirsutum L) seedlings[J]. Cotton Science, 2014, 26(2): 113-121. ] | |
[26] | 崔永生, 王峰, 孙景生, 等. 南疆机采棉田灌溉制度对土壤水盐变化和棉花产量的影响[J]. 应用生态学报, 2018, 29(11): 3634-3642. |
[Cui Yongsheng, Wang Feng, Sun Jingsheng, et al. Effects of irrigation regimes on the variation of soil water and salt and yield of mechanically harvested cotton in Southern Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3634-3642. ] | |
[27] | Plénet D, Mollier A, Pellerin S. Growth analysis of maize field crops under phosphorus deficiency Ⅱ. Radiation-use efficiency, biomass accumulation and yield components[J]. Plant and Soil, 2000, 224(2): 259-272. |
[28] | Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation[J]. Field Crops Research, 2001, 71(3): 183-193. |
[29] | 郭仁松, 林涛, 徐海江, 等. 微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响[J]. 水土保持学报, 2017, 31(1): 211-216. |
[Guo Rensong, Lin Tao, Xu Haijiang, et al. Effect of saline water drip irrigation on water and salt transport features and cotton yield of oasis cotton field[J]. Journal of Soil and Water Conservation, 2017, 31(1): 211-216. ] | |
[30] | 王宁, 杨杰, 黄群, 等. 盐胁迫下棉花K+和Na+离子转运的耐盐性生理机制[J]. 棉花学报, 2015, 27(3): 208-215. |
[Wang Ning, Yang Jie, Huang Qun, et al. Physiological salinity tolerance mechanism for transport of K+ and Na+ lons in cotton (Gossypium hirsutum L.) seedlings under salt stress[J]. Cotton Science, 2015, 27(3): 208-215. ] | |
[31] | 王洪博, 曹辉, 高阳, 等. 南疆无膜滴灌棉花灌溉制度对土壤水分和产量品质的影响[J]. 灌溉排水学报, 2020, 39(5): 26-34. |
[Wang Hongbo, Cao Hui, Gao Yang, et al. The effects of drip-irrigation scheduling without mulching on soil moisture, yield and quality of cotton in Southern Xinjiang[J]. Journal of Irrigation and Drainage, 2020, 39(5): 26-34. ] | |
[32] | 王赫. 长期咸水灌溉对土壤水盐变化与棉花产量的影响[D]. 泰安: 山东农业大学, 2023. |
[Wang He. Impacts of Long-term Saline Water Irrigation on Sail Water-Salt Variation and Cotton Yield[D]. Tai’an: Shandong Agricultural University, 2023. ] | |
[33] | 江柱, 张江辉, 白云岗, 等. 膜下咸水滴灌水肥盐调控对棉花盐离子、养分吸收及干物质分配的影响[J]. 灌溉排水学报, 2022, 41(2): 59-67. |
[Jiang Zhu, Zhang Jianghui, Bai Yungang, et al. The impact of mulched drip fertigation with saline water on uptake of ions and nutrients by cotton[J]. Journal of Irrigation and Drainage, 2022, 41(2): 59-67. ] | |
[34] | 张国伟. 土壤盐分影响棉花(Gossypium hirsutum L.)生长的生理机制研究[D]. 南京: 南京农业大学, 2011. |
[Zhang Guowei. Effects of Soil Salinity on Growth and Its Physiological Mechanism for Cotton (Gossypium hirsutum L.)[D]. Nanjing: Nanjing Agricultural University, 2011. ] | |
[35] | 龚雨田, 孙书洪, 闫宏伟. 微咸水灌溉对冬小麦产量及农艺性状的影响[J]. 节水灌溉, 2017(9): 33-37, 42. |
[Gong Yutian, Sun Shuhong, Yan Hongwei. Study on the impact of saline water with different materialization degree on growth characteristics and yield of winter wheat[J]. Water Saving Irrigation, 2017(9): 33-37, 42. ] | |
[36] | 张勇, 毕远杰, 郭向红, 等. 不同生育期微咸水灌溉对玉米生长影响研究[J]. 节水灌溉, 2017(9): 43-46. |
[Zhang Yong, Bi Yuanjie, Guo Xianghong, et al. Effects of brackish water irrigation on the growth of maize in different growth periods[J]. Water Saving Irrigation, 2017(9): 43-46. ] | |
[37] | 王毅, 王久生, 李爱卓, 等. 微咸水膜下滴灌对绿洲棉花生长特征与产量的影响[J]. 节水灌溉, 2011(11): 25-27, 30. |
[Wang Yi, Wang Jiusheng, Li Aizhuo, et al. Influence of drip irrigation under film with brackish water on physiological characteristics and yield of oasis cotton in Xinjiang Tarim Basin[J]. Water Saving Irrigation, 2011(11): 25-27, 30. ] | |
[38] | 李莎. 咸水膜下滴灌对土壤水盐运移及棉花生长产量影响的试验研究[D]. 石河子: 石河子大学, 2011. |
[Li Sha. Experimental Study on Effect of Drip Irrigation with Saltwater on the Soil Water and Salt Transport and the Growth and Yield of Cotton[D]. Shihezi: Shihezi University, 2011. ] | |
[39] | 刘雪艳, 丁邦新, 白云岗. 微咸水膜下滴灌对棉花植株盐分、养分吸收及品质的影响[J]. 干旱地区农业研究, 2020, 38(4): 128-135. |
[Liu Xueyan, Ding Bangxin, Bai Yungang. Effects of drip irrigation with brackish water under film mulch on salinity, nutrients and quality of cotton plants[J]. Agricultural Research in the Arid Areas, 2020, 38(4): 128-135. ] | |
[40] | 王允. 不同生育期水分亏缺对盆栽棉花生长发育的影响[D]. 武汉: 华中农业大学, 2016. |
[Wang Yun. Effects of Water Deficit at Different Growing Stage on Growth and Development Characteristics of Potted Cotton[D]. Wuhan: Huazhong Agricultural University, 2016. ] | |
[41] | 闵伟. 咸水滴灌对棉田土壤微生物及水氮利用效率的影响[D]. 石河子: 石河子大学, 2015. |
[Min Wei. Effect of Saline Water on Soil Microbe and Nitrogen-use Efficiency in Drip-irrigated Cotton Field[D]. Shihezi: Shihezi University, 2015. ] | |
[42] | 赖善星, 张耀珑, 盛统民, 等. 干旱区微咸水覆膜灌溉棉花根系生长分布与土壤水盐运移规律及其相互作用[J]. 安全与环境工程, 2022, 29(6): 175-183. |
[Lai Shanxing, Zhang Yaolong, Sheng Tongmin, et al. Cotton root growth distribution and soil water-salt transport and their interaction under film-mulched irrigation with brackish water in arid region[J]. Safety and Environmental Engineering, 2022, 29(6): 175-183. ] | |
[43] | 王庆明, 王永胜, 贾斌, 等. 咸水非充分灌溉对春小麦产量及水分利用效率的影响[J]. 灌溉排水学报, 2012, 31(2): 66-68. |
[Wang Qingming, Wang Yongsheng, Jia Bin, et al. Effect of non-sufficient irrigation with saline water on spring wheat yield, water use efficiency[J]. Journal of Irrigation and Drainage, 2012, 31(2): 66-68. ] | |
[44] | 袁成福, 冯绍元. 咸水非充分灌溉下制种玉米水分利用效率研究[J]. 人民黄河, 2017, 39(10): 137-141. |
[Yuan Chengfu, Feng Shaoyuan. Research on water use efficiency of seed maize under deficit irrigation with saline water[J]. Yellow River, 2017, 39(10): 137-141. ] | |
[45] | 韩美琪, 王振华, 朱艳, 等. 加气对西北旱区膜下滴灌棉花光合及水分利用效率的影响[J]. 排灌机械工程学报, 2024, 42(1): 64-70. |
[Han Meiqi, Wang Zhenhua, Zhu Yan, et al. Effects of aeration on photosynthesis and water use efficiency of cotton under mulched drip irrigation in arid area of Northwest China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(1): 64-70. ] | |
[46] | 毕言鹏. 咸水沟灌对土壤理化性质和棉花产量的影响[D]. 泰安: 山东农业大学, 2022. |
[Bi Yanpeng. Effects of Saline-water Furrow Irrigation on Soil Physicochemical Properties and Cotton Yield[D]. Tai’an: Shandong Agricultural University, 2022. ] | |
[47] | Tuna A L, Kaya C, Ashraf M, et al. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress[J]. Environmental and Experimental Botany, 2007, 59(2): 173-178. |
[48] | Neves-Piestun B G, Bernstein N. Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity[J]. Plant Physiology, 2001, 125(3): 1419-1428. |
[49] | Zhao M G, Tian Q Y, Zhang W H. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis[J]. Plant physiology, 2007, 144(1): 206-217. |
[50] | Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants[J]. Plant Science, 2004, 166(1): 3-16. |
/
〈 | 〉 |