水土资源

基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因

  • 赵卓怡 ,
  • 郝兴明
展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.阿克苏绿洲农田生态系统国家野外科学观测研究站,新疆 阿克苏 843017
赵卓怡(1997-),男,硕士研究生,主要从事干旱区水文过程研究. E-mail: zhuoyi_zhao@163.com

收稿日期: 2023-03-07

  修回日期: 2023-03-28

  网络出版日期: 2023-08-01

基金资助

中国科学院新疆生态与地理研究所自主部署项目(E050010801)

Actual evapotranspiration characteristics and attribution in arid Central Asia based on the Priestley-Taylor method

  • Zhuoyi ZHAO ,
  • Xingming HAO
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Akesu National Station of Observation and Research for Oasis Agro-ecosystem, Akesu 843017, Xinjiang, China

Received date: 2023-03-07

  Revised date: 2023-03-28

  Online published: 2023-08-01

摘要

蒸散是水—能—碳循环之间的纽带,了解蒸散的动态过程及其驱动因素对中亚干旱区水资源稳定、生态环境安全及农业水资源管理等方面具有重要意义。本研究基于Priestley-Taylor方法,估算并分析了2000—2019年中亚干旱区蒸散的时空变化,采用Lindeman-Merenda-Gold方法定量评估了不同驱动因素对蒸散各组分的绝对贡献,并以各组分对蒸散变化的贡献加权,评估了各驱动因素对蒸散的贡献。结果表明:中亚干旱区蒸散整体以1.45 mm·a-1的速度波动上升,其变化趋势呈“东升西降”的空间分布;植被蒸腾、蒸发、冠层截留蒸发的变化趋势分别是2.46 mm·a-1、-1.03 mm·a-1、0.02 mm·a-1,三者对蒸散变化的贡献分别是70.09%、29.34%、0.57%;植被蒸腾和冠层截留蒸发的主导因素是NDVI,蒸发的主导因素是气温;总体上,NDVI是中亚干旱区蒸散变化的主导因素,其绝对贡献为28.16%。

本文引用格式

赵卓怡 , 郝兴明 . 基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因[J]. 干旱区研究, 2023 , 40(7) : 1085 -1093 . DOI: 10.13866/j.azr.2023.07.06

Abstract

Understanding the dynamic process of evapotranspiration and its causes is crucial for water resource stability, ecological and environmental security, and agricultural water resource management in arid Central Asia. Evapotranspiration is the connection between the water-energy-carbon cycle. This study used the Priestley-Taylor diurnal land surface temperature range (PT-DTsR) model to calculate and analyze the spatial and temporal variability of evapotranspiration in arid Central Asia from 2000 to 2019. It also used the Lindeman-Merenda-Gold method to quantitatively evaluate the absolute contributions of various drivers to each component of evapotranspiration. By weighing each component’s contribution to the change in evapotranspiration, the contribution of each driver to evapotranspiration was assessed. According to the findings, evapotranspiration increased in dry Central Asia at a rate of 1.45 mm per year, and its pattern indicates that it increased in the east and decreased in the west. The changes in transpiration, evaporation, and interception were 2.46 mm·a-1, -1.03 mm·a-1, and 0.02 mm·a-1, respectively. These three trends contributed 70.09%, 29.34%, and 0.57%, to the change in evapotranspiration. With an absolute contribution of 28.16%, Normalized Difference Vegetation Index (NDVI) is the key driver of evapotranspiration fluctuations in arid Central Asia.

参考文献

[1] UNESCO U-W. United Nations World Water Development Report 2020: Water and Climate Change[R]. Paris: UNESCO, 2020.
[2] Eliasson J. The rising pressure of global water shortages[J]. Nature, 2014, 517(7532): 6.
[3] Rijsberman F R. Water scarcity: Fact or fiction?[J]. Agricultural Water Management, 2006, 80(1-3): 5-22.
[4] V?r?smarty C J, Mcintyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561.
[5] Li Z, Chen Y, Fang G, et al. Multivariate assessment and attribution of droughts in Central Asia[J]. Scientific Reports, 2017, 7(1): 1316.
[6] Siegfried T, Bernauer T, Guiennet R, et al. Will climate change exacerbate water stress in Central Asia?[J]. Climatic Change, 2011, 112(3-4): 881-899.
[7] Bernauer T, Siegfried T. Climate change and international water conflict in Central Asia[J]. Journal of Peace Research, 2012, 49(1): 227-239.
[8] Mao J, Fu W, Shi X, et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends[J]. Environmental Research Letters, 2015, 10(9): 094008.
[9] Zhang Y, Pe?a-Arancibia J L, Mcvicar T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components[J]. Scientific Reports, 2016, 6(1): 1-12.
[10] Fisher J B, Melton F, Middleton E, et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Water Resources Research, 2017, 53(4): 2618-2626.
[11] Niu Z, He H, Zhu G, et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming[J]. Agricultural and Forest Meteorology, 2019, 279: 107701.
[12] Pour S H, Wahab A K A, Shahid S, et al. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia[J]. Atmospheric Research, 2020, 246: 105096.
[13] Katul G G, Oren R, Manzoni S, et al. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50(3): RG3002.
[14] Mcmahon T A, Finlayson B L, Peel M C. Historical developments of models for estimating evaporation using standard meteorological data[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 788-818.
[15] Budyko M I. The effect of solar radiation variations on the climate of the Earth[J]. Tellus, 1969, 21(5): 611-619.
[16] Xu S, Yu Z, Yang C, et al. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin[J]. Agricultural and Forest Meteorology, 2018, 263: 118-129.
[17] Zeng Z, Peng L, Piao S. Response of terrestrial evapotranspiration to Earth’s greening[J]. Current Opinion in Environmental Sustainability, 2018, 33: 9-25.
[18] Yang Z, Zhang Q, Hao X, et al. Changes in evapotranspiration over global semiarid regions 1984-2013[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 2946-2963.
[19] Jiang F, Xie X, Liang S, et al. Loess Plateau evapotranspiration intensified by land surface radiative forcing associated with ecological restoration[J]. Agricultural and Forest Meteorology, 2021, 311: 108669.
[20] Liu J, You Y. The roles of catchment characteristics in precipitation partitioning within the budyko framework[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD035168.
[21] Piao S, Wang X, Park T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2019, 1(1): 14-27.
[22] Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2: 122-129.
[23] Zhu Z, Piao S, Myneni R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6(8): 791-795.
[24] Zeng Z, Piao S, Li Z X, et al. Impact of earth greening on the terrestrial water cycle[J]. Journal of Climate, 2018, 31(7): 2633-2650.
[25] Pan S, Tian H, Dangal S R S, et al. Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century[J]. Earth’s Future, 2015, 3(1): 15-35.
[26] Yao J, Chen Y, Chen J, et al. Intensification of extreme precipitation in arid Central Asia[J]. Journal of Hydrology, 2021, 598: 125760.
[27] Hao X, Fan X, Zhao Z, et al. Spatiotemporal patterns of evapotranspiration in Central Asia from 2000 to 2020[J]. Remote Sensing, 2023, 15(4): 1150.
[28] Yao Y, Liang S, Cheng J, et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm[J]. Agricultural and Forest Meteorology, 2013, 171-172: 187-202.
[29] Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites[J]. Remote Sensing of Environment, 2008, 112(3): 901-919.
[30] Cao M, Wang W, Xing W, et al. Multiple sources of uncertainties in satellite retrieval of terrestrial actual evapotranspiration[J]. Journal of Hydrology, 2021, 601: 126642.
[31] Teuling A J, Van Loon A F, Seneviratne S I, et al. Evapotranspiration amplifies European summer drought[J]. Geophysical Research Letters, 2013, 40(10): 2071-2075.
[32] Yao Y, Wang X, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years[J]. Global Change Biology, 2018, 24(1): 184-196.
[33] Jiang L, Guli Jiapaer, Bao A, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of The Total Environment, 2017, 599-600: 967-980.
[34] Zhao R, Liu X, Dong J, et al. Human activities modulate greening patterns: A case study for southern Xinjiang in China based on long time-series analysis[J]. Environmental Research Letters, 2022, 17(4): 044012.
[35] Budyko M I. The heat balance of the earth’s surface[J]. Soviet Geography, 1961, 2(4): 3-13.
[36] Chen Y, Li W, Deng H, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6: 35458.
[37] Bolch T. Hydrology: Asian glaciers are a reliable water source[J]. Nature, 2017, 545(7653): 161-162.
[38] Pritchard H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7758): 649-654.
[39] Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318): 951-954.
文章导航

/