天气与气候

基于多模式的青藏高原前冬降水预测性能评估

  • 申红艳 ,
  • 温婷婷 ,
  • 赵仙荣 ,
  • 冯晓莉
展开
  • 1.陕西省气象局秦岭和黄土高原生态环境气象重点实验室,陕西 西安 710014
    2.青海省气候中心,青海 西宁 810001
    3.陕西省大气探测技术保障中心,陕西 西安 710014
申红艳(1979-),女,高级工程师,主要研究方向为气候与气候变化. E-mail: ishyshen@163.com

收稿日期: 2023-03-08

  修回日期: 2023-05-17

  网络出版日期: 2023-08-01

基金资助

国家自然基金项目(42065003);青海省科技厅基础研究计划(2021-ZJ-757)

Evaluation of multi-model precipitation simulation over the Tibetan Plateau in early winter

  • Hongyan SHEN ,
  • Tingting WEN ,
  • Xianrong ZHAO ,
  • Xiaoli FENG
Expand
  • 1. Shaanxi Meteorological Bureau, Key Laboratory of Eco-Environment and Meteorology for Qinling Mountains and Loess Plateau, Xi’an 710014, Shaanxi, China
    2. Qinghai Climate Center, Xining 810001, Qinghai, China
    3. Shanxi Province Atmospheric Observation and Technical Support Center, Xi’an 710014, Shaanxi, China

Received date: 2023-03-08

  Revised date: 2023-05-17

  Online published: 2023-08-01

摘要

基于目前主流气候业务模式系统(BCC_CSM 1.1、ECMWF_System 5、NCEP_CFSv 2、TCC_MRI-CGCM 3),从确定性预报角度评估多种模式对青藏高原前冬降水的预测性能。结果表明:多模式均能体现出青藏高原前冬(11—12月)降水空间分布型,但对降水量级存在普遍高估的现象,其中,来自BCC的模式能反映出降水全区一致型和南北反向型主模态的时空演变特征,EC模式高估第一模态的主导作用。多模式对降水历史回报以正技巧为主,BCC模式的预报技巧最优,TCC仅对青藏高原北部预测较好。从可预报性来源的角度分析发现,赤道中东太平洋海温指数(Ni?o 3.4)和印度洋偶极子(IOD)正位相对提升模式预测技巧具有很好的指示性;BCC模式能预测出2018年高原前冬降水异常趋势,在于其对影响青藏高原降水异常的关键环流型具有一定预测能力。

本文引用格式

申红艳 , 温婷婷 , 赵仙荣 , 冯晓莉 . 基于多模式的青藏高原前冬降水预测性能评估[J]. 干旱区研究, 2023 , 40(7) : 1027 -1039 . DOI: 10.13866/j.azr.2023.07.01

Abstract

The prediction performance of four seasonal prediction model systems (BCC_CSM 1.1, ECMWF_System 5, CFSv 2, and TCC_MRI-CGCM 3) was evaluated from a deterministic perspective. Focusing on the spatial distribution and temporal variation of precipitation climatology in early winter, BCC_CSM 1.1 exhibited the best prediction performance among the models. Additionally, TCC_MRI-CGCM 3 performed well in capturing the interannual variability of precipitation, followed by BCC_CSM 1.1. All models effectively simulated regional-uniform precipitation, with BCC_CSM 1.1 exhibiting the highest time correlation coefficient and TCC_MRI-CGCM 3 showing the highest pattern correlation coefficient. Although all models could reproduce the north-south reverse mode, BCC_CSM 1.1 outperformed the other models in terms of reproducing the spatial pattern and interannual variation, given the model’s strong prediction capability for the Eurasian (EU) teleconnection pattern and western Pacific subtropical high, as well as accurate simulations of the physical processes of El Ni?o-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) that impact early winter Tibetan Plateau precipitation.

参考文献

[1] 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
[1] [Xu Xiangde, Chen Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772. ]
[2] Webster P J, Magana V O, Palmer T N, et al. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14451-14510.
[3] Schiemann R, Lüthi D, Sch?r C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region[J]. Journal of Climate, 2009, 22(11): 2940-2957.
[4] 刘玉莲, 任国玉, 于宏敏. 中国降雪气候学特征[J]. 地理科学, 2012, 32(10): 1176-1185.
[4] [Liu Yulian, Ren Guoyu, Yu Hongmin. Climatology of snow in China[J]. Scientia Geographica Sinica, 2012, 32(10): 1176-1185. ]
[5] Zhou B, Wang Z, Shi Y. Possible role of Hadley circulation strengthening in interdecadal intensifcation of snowfalls over northeastern China under climate change[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(16): 265-283.
[6] 梁潇云, 钱正安, 李万元. 青藏高原东部牧区雪灾的环流型及水汽场分析[J]. 高原气象, 2002, 21(4): 359-367.
[6] [Liang Xiaoyun, Qian Zheng’an, Li Wanyuan. Analyses on circulation patterns and water vapor fields of snow disaster weather in Eastern pasture areas of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2002, 21(4): 359-367. ]
[7] 韩进军, 王建萍, 陈亮, 等. 影响柴达木盆地降水量变化的主要天气动力因素[J]. 干旱区研究, 2020, 37(2): 314-324.
[7] [Han Jinjun, Wang Jianping, Chen Liang, et al. The main weather dynamic factors affecting precipitation change in the Qaidam Basin[J]. Arid Zone Research, 2020, 37(2): 314-324. ]
[8] 董文杰, 韦志刚, 范丽军. 青藏高原东部牧区雪灾的气候特征分析[J]. 高原气象, 2001, 20(4): 402-406.
[8] [Dong Wenjie, Wei Zhigang, Fan Lijun. Climatic character analyses of snow disasters in east Qinghai-Xizang plateau livestock farm[J]. Plateau Meteorology, 2001, 20(4): 402-406. ]
[9] Cuo L, Zhang Y, Wang Q, et al. Climate change on the northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms[J]. Journal of Climate, 2013, 26(1): 85-109.
[10] Gao Y, Chen Y, Lü S. Numerical simulation of the critical scale of oasis maintenance and development in the arid regions of Northwest China[J]. Advances in Atmospheric Sciences, 2014, 21(1): 113-124.
[11] Yuan C, Tozuka T, Miyasaka T, et al. Respective influences of IOD and ENSO on the Tibetan Plateau snow cover in early winter[J]. Climate Dynamics, 2009, 33(4): 509-520.
[12] Jiang X, Zhang T, Tam C Y, et al. Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: Roles of convections over the western North Pacific and Indian Ocean[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11961-11975.
[13] Shen Hongyan, Gong Zhiqiang, Feng Guolin, et al. Causes of the extreme snowfall anomaly over the Northeast Tibetan Plateau in early winter 2018[J]. Climate Dynamics, 2021, 56: 1767-1782.
[14] Wu Z, Li J, Jiang Z, et al. Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective[J]. Journal of Climate, 2012, 25(7): 2481-2489.
[15] Dong M, Wu T W, Wang Z Z, et al. A simulation study on the extreme temperature events of the 20th century by using the BCC_AGCM[J]. Acta Meteorologica Sinica, 2012, 26(4): 489-507.
[16] Chen G, Huang R. Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China[J]. Journal of Climate, 2012, 25(22): 7834-7851.
[17] 朱春子, 李清泉, 王兰宁, 等. 基于T106L26全球大气环流模式的夏季集合预报[J]. 大气科学学报, 2013, 36(2): 192-201.
[17] [Zhu Chunzi, Li Qingquan, Wang Lanning, et al. An ensemble forecast for summer with a global atmospheric general circulation model T106L26[J]. Transactions of Atmospheric Sciences, 2013, 36(2): 192-201. ]
[18] 何慧根, 李巧萍, 吴统文, 等. 月动力延伸预测模式业务系统DERF 2.0对中国气温和降水的预测性能评估[J]. 大气科学, 2014, 38(5): 950-964.
[18] [He Huigen, Li Qiaoping, Wu Tongwen, et al. Temperature and precipitation evaluation of monthly dynamic extended range forecast operational system DERF 2.0 in China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 950-964. ]
[19] 吴统文, 宋连春, 刘向文, 等. 国家气候中心短期气候预测模式系统业务化进展[J]. 应用气象学报, 2012, 24(5): 533-543.
[19] [Wu Tongwen, Song Lianchun, Liu Xiangwen, et al. Progress in developing the short-range operational climate prediction system of china national climate center[J]. Journal of Applied Meteorological Science, 2012, 24(5): 533-543. ]
[20] 吴捷, 任宏利, 张帅. BCC二代气候系统模式的季节预测评估和可预报性分析[J]. 大气科学, 2017, 41(6): 16-29.
[20] [Wu Jie, Ren Hongli, Zhang Shuai, et al. Evaluation and predictability analysis of seasonal prediction by BCC second-generation climate system model[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 16-29. ]
[21] 顾伯辉, 郑志海, 封国林, 等. 季节预测模式对东亚夏季环流的预测能力及其对热带海洋的响应分析[J]. 大气科学, 2017, 41(1): 91-105.
[21] [Gu Bohui, Zheng Zhihai, Feng Guolin, et al. The capacity of seasonal forecast models for the forecast of the East Asian summer circulation and its response to tropical SST anomaly[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 91-105. ]
[22] 郭渠, 刘向文, 吴统文, 等. 基于BCC_CSM模式的中国东部夏季降水预测检验及订正[J]. 大气科学, 2017, 41(1): 71-90.
[22] [Guo Qu, Liu Xiangwen, Wu Tongwen, et al. Verification and correction of East China summer rainfall prediction based on BCC_CSM[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 71-90. ]
[23] 孙照渤. 短期气候预测基础[M]. 北京: 气象出版社, 2010.
[23] [Sun Zhaobo. Elements of Short Period Climate Predictions[M]. Beijing: China Meteorological Press, 2010. ]
[24] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007.
[24] [Wei Fengying. Statistical Diagnosis and Prediction Technology of Modern Climate[M]. Beijing: China Meteorological Press, 2007. ]
[25] North Gerald R, Bell Thomas L, Cahalan Robert F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110: 699-706.
[26] 任宏利, 刘颖, 左金清, 等. 国家气候中心新一代 ENSO 预测系统及其对 2014/2016年超强厄尔尼诺事件的预测[J]. 气象, 2016, 42(5): 521-531.
[26] [Ren Hongli, Liu Ying, Zuo Jinqing, et al. The new generation of ENSO prediction system in Beijing Climate center and its predictions for the 2014/2016 super El Ni?o event[J]. Meteorological Monthly, 2016, 42(5): 521-531. ]
[27] Shen Hongyan, Gong Zhiqiang, Liu Boqi, et al. Remote effects of IOD and ENSO on motivating the atmospheric pattern favorable for snowfall over the Tibetan Plateau in early winter[J]. Frontiers in Climate, 2021, 3(6): 1-13.
[28] Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the northern Hemisphere winter[J]. Monthly Weather Review, 1981, 109(4): 784-812.
文章导航

/