干旱区研究 ›› 2023, Vol. 40 ›› Issue (5): 715-725.doi: 10.13866/j.azr.2023.05.04
收稿日期:
2022-09-12
修回日期:
2022-10-26
出版日期:
2023-05-15
发布日期:
2023-05-30
通讯作者:
马敏劲. E-mail: minjinma@lzu.edu.cn
作者简介:
赵侦竹(1997-),女,硕士研究生,主要从事机器学习与污染物模拟. E-mail: 基金资助:
ZHAO Zhenzhu(),MA Minjin(),KANG Guoqiang,CAO Yidan
Received:
2022-09-12
Revised:
2022-10-26
Online:
2023-05-15
Published:
2023-05-30
摘要:
持续性空气污染是对健康有重要危害的环境问题,利用2014—2021年逐日AQI以及PM2.5、PM10、SO2、NO2、O3(8 h)(臭氧8 h滑动平均)和CO的质量浓度,分析山谷城市兰州的空气污染年际变化特征、月季变化特征并重点分析兰州市空气污染持续性特征。结果发现冬季短时间轻度持续污染过程、长时间中度和重度持续污染过程次数最多,春季短时间中度和重度持续污染过程次数最多,夏季无中度和重度持续污染过程,秋季与冬季长时间轻度持续污染过程较多。持续性污染过程中起主要影响作用的污染物,因季节、长短持续时间和等级不同而不同,冬季轻度、中度持续污染过程和短时间重度持续污染过程,起主要影响的污染物为PM2.5,长时间重度持续污染过程为PM2.5和PM10;春季持续污染过程中主要污染物为PM10;夏季轻度持续污染过程中主要污染物为O3(8 h);秋季短时间轻度持续污染过程中主要污染物为PM10,而长时间轻度持续污染过程分别为PM10、PM2.5和NO2。
赵侦竹, 马敏劲, 康国强, 曹译丹. 兰州市空气污染物变化及污染持续性特征分析[J]. 干旱区研究, 2023, 40(5): 715-725.
ZHAO Zhenzhu, MA Minjin, KANG Guoqiang, CAO Yidan. Analysis on variation characteristics of continuous air pollution in Lanzhou[J]. Arid Zone Research, 2023, 40(5): 715-725.
表3
2014—2021年兰州市持续污染过程次数统计"
持续污染过程等级 | 季节 | 持续天数/d | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 17 | 19 | 21 | ||
轻度污染 | 冬 | 24 | 16 | 11 | 7 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
春 | 41 | 13 | 3 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
夏 | 63 | 15 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
秋 | 21 | 14 | 2 | 2 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
中度污染 | 冬 | 4 | 1 | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
春 | 5 | 3 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
夏 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
秋 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
重度污染 | 冬 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
春 | 0 | 5 | 2 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | |
夏 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
秋 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
[1] |
陈瑞, 孙建云, 魏巧珍, 等. 2014—2020年兰州市大气污染物特征及变化趋势分析[J]. 卫生研究, 2021, 50(5): 769-774.
doi: 10.19813/j.cnki.weishengyanjiu.2021.05.011 pmid: 34749870 |
[Chen Rui, Sun Jianyun, Wei Qiaozhen, et al. The characteristics and change trends of air pollutants in Lanzhou City from 2014 to 2020[J]. Journal of Hygiene Research, 2021, 50(5): 769-774. ]
doi: 10.19813/j.cnki.weishengyanjiu.2021.05.011 pmid: 34749870 |
|
[2] | 贾册, 陈臻, 韩梅. 基于决策树模型的区域PM2.5污染管控时空识别——以关中地区为例[J]. 干旱区研究, 2022, 39(4): 1056-1065. |
[Jia Ce, Chen Zhen, Han Mei. Optimal time period for PM2.5 control based on decision tree model: A case study of Guanzhong, China[J]. Arid Zone Research, 2022, 39(4): 1056-1065. ] | |
[3] | 刘子龙, 代斌, 崔卓彦, 等. 大气污染物浓度变化特征及潜在源分析——以乌鲁木齐为例[J]. 干旱区研究, 2021, 38(2): 562-569. |
[Liu Zilong, Dai Bin, Cui Zhuoyan, et al. Concentration characteristics and potential source of atmospheric pollutants: A case study in Urumqi[J]. Arid Zone Research, 2021, 38(2): 562-569. ] | |
[4] | 史亚妮, 董继元, 刘玉荣. 兰州市空气污染对儿童呼吸疾病的影响[J]. 中国环境科学, 2020, 40(4): 1792-1799. |
[Shi Yani, Dong Jiyuan, Liu Yurong. Study on the effect of air pollution on respiratory diseases among children in Lanzhou[J]. China Environmental Science, 2020, 40(4): 1792-1799. ] | |
[5] |
Yin H, Xu L Y, Cai Y P. Monetary valuation of PM10-related health risks in Beijing China: The necessity for PM10 pollution indemnity[J]. International Journal of Environmental Research and Public Health, 2015, 12(8): 9967-9987.
doi: 10.3390/ijerph120809967 |
[6] |
Pope C A. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys[J]. Archives of Environmental Health, 1991, 46(2): 90-97.
doi: 10.1080/00039896.1991.9937434 pmid: 2006899 |
[7] |
Brook R D, Rajagopalan S, Pope C A, et al. Particulate matter air pollution and cardiovascular disease[J]. Circulation, 2010, 121(21): 2331-2378.
doi: 10.1161/CIR.0b013e3181dbece1 |
[8] |
Jazcilevich A D, Garcia A R, Caetano E. Locally induced surface air confluence by complex terrain and its effects on air pollution in the valley of Mexico[J]. Atmospheric Environment, 2005, 39(30): 5481-5489.
doi: 10.1016/j.atmosenv.2005.05.046 |
[9] | Gustin M S, Fine R, Miller M, et al. The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain[J]. Science of the Total Environment, 2015, 530(44): 455-470. |
[10] | 刘芮伶, 李礼, 余家燕, 等. 重庆市一次重霾污染过程的特征及成因分析[J]. 环境科学与技术, 2016, 39(S2): 8-13. |
[Liu Ruiling, Yu Jiayan, et al. Characteristics and formation mechanism of a serious haze episode in Chongqing[J]. Environmental Science & Technology, 2016, 39(S2): 8-13. ] | |
[11] | 刘引鸽, 周欢欢, 赵阿玲, 等. 河谷型城市一次大气持续重污染特征及其原因分析——以宝鸡市为例[J]. 环境污染与防治, 2019, 41(11): 1286-1290. |
[Liu Yinge, Zhou Huanhuan, Zhao Aling, et al. Characteristics of continuous heavy pollution in a valley cty and its causes: A case study of Baoji City[J]. Environmental Pollution & Control, 2019, 41(11): 1286-1290. ] | |
[12] |
Seibert P, Kromp-Kolb H, Kasper A, et al. Transport of polluted boundary layer air from the Po Valley to high-alpine sites[J]. Atmospheric Environment, 1998, 32(23): 3953-3965.
doi: 10.1016/S1352-2310(97)00174-X |
[13] |
Largeron Y, Staquet C. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys[J]. Atmospheric Environment, 2016, 135(23): 92-108.
doi: 10.1016/j.atmosenv.2016.03.045 |
[14] |
Davies F, Middleton D R, Bozier K E. Urban air pollution modelling and measurements of boundary layer height[J]. Atmospheric Environment, 2007, 41(19): 4040-4049.
doi: 10.1016/j.atmosenv.2007.01.015 |
[15] |
Aslam M Y, Krishna K R, Beig G, et al. Diurnal evolution of urban heat island and its impact on air quality by using ground observations (SAFAR) over New Delhi[J]. Open Journal of Air Pollution, 2017, 6(2): 52-64.
doi: 10.4236/ojap.2017.62005 |
[16] |
Zhang Q, Li H Y. A study of the relationship between air pollutants and inversion in the ABL over the city of Lanzhou[J]. Advances in Atmospheric Sciences, 2011, 28(4): 879-886.
doi: 10.1007/s00376-010-0079-z |
[17] |
Miao Y C, Liu S H, Zheng Y J, et al. Modeling the feedback between aerosol and boundary layer processes: A case study in Beijing, China[J]. Environmental Science and Pollution Research, 2016, 23(4): 3342-3357.
doi: 10.1007/s11356-015-5562-8 |
[18] |
Li Z Q, Guo J P, Ding A J, et al. Aerosol and boundary-layer interactions and impact on air quality[J]. National Science Review, 2017, 4(6): 810-833.
doi: 10.1093/nsr/nwx117 |
[19] |
Platis A, Altstadter B, Wehner B, et al. An observational case study on the influence of atmospheric boundary-layer dynamics on new particle formation[J]. Boundary-Layer Meteorology, 2016, 158(1): 67-92.
doi: 10.1007/s10546-015-0084-y |
[20] | 王跃思, 姚利, 王莉莉, 等. 2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学: 地球科学, 2014, 44(1): 15-26. |
[Wang Yuesi, Yao Li, Wang Lili, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China[J]. Scientia Sinica(Terrae), 2014, 44(1): 15-26. ] | |
[21] |
Neu U, Kunzle T, Wanner H. On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration: A case study[J]. Boundary-Layer Meteorology, 1994, 69(3): 221-247.
doi: 10.1007/BF00708857 |
[22] |
Mckendry I G, Steyn D G, Lundgren J, et al. Elevated ozone layers and vertical down-mixing over the Lower Fraser Valley, BC[J]. Atmospheric Environment, 1997, 31(14): 2135-2146.
doi: 10.1016/S1352-2310(96)00127-6 |
[23] | Ohashi Y, Kida H. Effects of mountains and urban areas on daytime local-circulations in the Osaka and Kyoto regions[J]. Journal of the Meteorological Society of Japan, 2002, 80(4): 539-560. |
[24] |
Kalthoff N, Kottmeier C, Thurauf J, et al. Mesoscale circulation systems and ozone concentrations during ESCOMPTE: A case study from IOP 2b[J]. Atmospheric Research, 2005, 74(1-4): 355-380.
doi: 10.1016/j.atmosres.2004.04.006 |
[25] | De Foy B, Caetano E, Magana V, et al. Mexico City basin wind circulation during the MCMA-2003 field campaign[J]. Atmospheric Chemistry and Physics, 2005, 5(5): 2267-2288. |
[26] |
杨燕萍, 王莉娜, 杨丽丽, 等. 兰州市沙尘天气污染特征及潜在源区[J]. 中国沙漠, 2020, 40(3): 60-66.
doi: 10.7522/j.issn.1000-694X.2019.00045 |
[Yang Yanping, Wang Lina, Yang Lili, et al. Air pollution characteristics and potential sources in Lanzhou during dust weather[J]. Journal of Desert Research, 2020, 40(3): 60-66. ]
doi: 10.7522/j.issn.1000-694X.2019.00045 |
|
[27] | 马珊, 李忠勤, 陈红, 等. 兰州市采暖期空气质量特征及污染源分析[J]. 环境化学, 2019, 38(2): 344-353. |
[Ma Shan, Li Zhongqin, Chen Hong, et al. Analysis of air quality characteristics and sources of pollution during heating period in Lanzhou[J]. Environmental Chemistry, 2019, 38(2) : 344-353. ] | |
[28] | 马敏劲, 苏雨萌, 丁凡, 等. 兰州及其卫星城市空气污染异同及气象影响要素[J]. 干旱气象, 2020, 38(5): 834-846. |
[Ma Minjin, Su Yumeng, Ding Fan, et al. Similarities and differences of air pollution between Lanzhou and its satellite city and meteorological influence factors[J]. Journal of Arid Meteorology, 2020, 38(5): 834-846. ] | |
[29] | 王式功, 杨民, 祁斌, 等. 甘肃河西沙尘暴对兰州市空气污染的影响[J]. 中国沙漠, 1999, 19(4): 58-62. |
[Wang Shigong, Yang Min, Qi Bin, et al. Influence of sand-dust storms occurring over the Gansu Hexi district on the air pollution in Lanzhou City[J]. Journal of Desert Research, 1999, 19(4): 58-62. ] | |
[30] | 马敏劲, 谭子渊, 陈玥, 等. 近15 a兰州市空气质量变化特征及沙尘天气影响[J]. 兰州大学学报(自然科学版), 2019, 55(1): 33-41. |
[Ma Minjin, Tan Ziyuan, Chen Yue, et al. Characteristics of air quality and impact of sand and dust weather in the recent 15 years in Lanzhou City[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(1): 33-41. ] | |
[31] | 马敏劲, 郭世奇, 王式功. 近11年兰州空气污染特征及其边界层结构影响的分析[J]. 兰州大学学报(自然科学版), 2012, 48(6): 69-73. |
[Ma Minjin, Guo Shiqi, Wang Shigong. Analysis of the characteristics of air pollution and its boundary layer structural effect in recent 11 years over Lanzhou[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(6): 69-73. ] | |
[32] | 褚润, 张国珍, 谢红刚. 兰州市大气污染成因分析[J]. 兰州交通大学学报, 2006, 25(4): 59-62. |
[Chu Run, Zhang Guozhen, Xie Honggang. Analysis of the cause of Lanzhou air pollution[J]. Journal of Lanzhou Jiaotong University (Natural Sciences), 2006, 25(4): 59-62. ] | |
[33] | Huang X, Ding A J, Gao J, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China[J]. National Science Review, 2021, 8(2): 1-9. |
[34] | 苏雨萌. 基于机器学习方法的关中盆地PM2.5浓度的模拟和预报[D]. 兰州: 兰州大学, 2021. |
[Su Yumeng. Simulation in Guanzhong Basin Based on Machine Learnning Method[D]. Lanzhou: Lanzhou University, 2021. ] | |
[35] |
Shen L, Jacob D J, Liu X, et al. An evaluation of the ability of the Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China: Application to 2005-2017 ozone trends[J]. Atmospheric Chemistry and Physics, 2019, 19(9): 6551-6560.
doi: 10.5194/acp-19-6551-2019 |
[36] | 王式功, 杨德保, 李腊平, 等. 兰州城区冬半年冷锋活动及其对空气污染的影响[J]. 高原气象, 1998, 17(2): 33-40. |
[Wang Shigong, Yang Debao, Li Laping, et al. Cold-front activities and its influence on air pollution at urban districts of Lanzhou in cold half year[J]. Plateau Meteorology, 1998, 17(2): 33-40. ] | |
[37] | 魏倩, 隆霄, 赵建华, 等. 边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究[J]. 干旱区研究, 2021, 38(1): 163-177. |
[Wei Qian, Long Xiao, Zhao Jianhua, et al. Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China[J]. Arid Zone Research, 2021, 38(1): 163-177. ] | |
[38] | 陈晶, 郭晓宁, 白文娟, 等. 近60 a柴达木盆地沙尘天气时空变化特征及其影响因子[J]. 干旱区研究, 2021, 38(4): 1040-1047. |
[Chen Jing, Guo Xiaoning, Bai Wenjuan, et al. Spatiotemporal characteristics and influencing factors of dust weather in Qaidam Basin in recent 60 years[J]. Arid Zone Research, 2021, 38(4): 1040-1047. ] | |
[39] | 王式功, 董光荣, 陈惠忠, 等. 沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4): 5-12. |
[Wang Shigong, Dong Guangrong, Chen Huizhong, et al. Advances in studying sand-dust storms of China[J]. Journal of Desert Research, 2000, 20(4): 5-12. ] | |
[40] | 杨复沫, 贺克斌, 马永亮, 等. 北京大气PM2. 5中微量元素的浓度变化特征与来源[J]. 环境科学, 2003, 24(6): 33-37. |
[Yang Fumo, He Kebin, Ma Yongliang, et al. Characteristics and sources of trace elements in ambient PM2.5 in Beijing[J]. Environmental Science, 2003, 24(6): 33-37. ] | |
[41] |
Chan Y C, Simpson R W, Mctainsh G H, et al. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmospheric Environment, 1999, 33(19): 3237-3250.
doi: 10.1016/S1352-2310(99)00091-6 |
[42] | 冯鑫媛. 兰州不同粒径颗粒物污染特征及沙尘天气对其影响的研究[D]. 兰州: 兰州大学, 2009. |
[Feng Xinyuan. A Study on Variations of Concentrations of Particulate Matter with Different Sizes in Lanzhou and Influence of Dust Events on Them[D]. Lanzhou: Lanzhou University, 2009. ] | |
[43] | 马秉吉, 马玉霞, 虞志昂, 等. 兰州市近地面臭氧污染分布特征[J]. 环境保护科学, 2019, 45(3): 60-65. |
[Ma Bingji, Ma Yuxia, Yu Zhi’ang, et al. Characteristics of near-surface ozone pollution in Lanzhou[J]. Environmental Protection Science, 2019, 45(3): 60-65. ] |
[1] | 王娜, 塔依尔江·艾山, 玉米提·哈力克, 王慧娟, 买尔哈巴·吾买尔. 和田市空气质量特征及潜在健康效应[J]. 干旱区研究, 2023, 40(3): 349-357. |
[2] | 钟晓菲, 张明军, 张宇, 王家鑫, 刘泽琛, 谷来磊. 基于稳定同位素的兰州市南北两山土壤水入渗模式[J]. 干旱区研究, 2023, 40(11): 1744-1753. |
[3] | 刘子龙,代斌,崔卓彦,刘永高,徐柱,郑新军. 大气污染物浓度变化特征及潜在源分析——以乌鲁木齐为例[J]. 干旱区研究, 2021, 38(2): 562-569. |
[4] | 刘小娥,苏世平,李毅,王维. 黄土高原地区人工林营造——混交林模式生态效益研究[J]. 干旱区研究, 2021, 38(2): 380-391. |
[5] | 买买提阿布都拉·依米尔, 布帕提曼·艾拜都拉, 陈天宇, 玛依拉·麦麦提, 赵玉倩. 新疆和田绿洲空气质量状况与气象条件的关系[J]. 干旱区研究, 2020, 37(1): 46-57. |
[6] | 蒋雨荷,王式功1、靳双龙2、樊晋1. 中国北方一次强沙尘暴天气过程的大气污染效应[J]. 干旱区研究, 2018, 35(6): 1344-1351. |
[7] | 曾海鳌,吴敬禄. 塔吉克斯坦不同土壤/沉积物元素组成与分布特征[J]. 干旱区研究, 2014, 31(1): 13-19. |
[8] | 李红艳, 李晶, 张东海, 陈山山. 西安市环境库兹涅茨曲线分析[J]. 干旱区研究, 2013, 30(3): 556-562. |
[9] | 魏疆. 2000-2009年乌鲁木齐市湿沉降变化特征[J]. 干旱区研究, 2012, 29(3): 529-533. |
[10] | 魏疆, 王国华, 任泉, 刘志辉. 乌鲁木齐市大气污染物浓度计量模型研究[J]. 干旱区研究, 2011, 28(5): 896-900. |
|